Sensitive and Extraction-Free Detection of Methicillin-Resistant Staphylococcus aureus through Ag + Aptamer-Based Color Reaction

Refractory infections, such as hospital-acquired pneumonia, can be better diagnosed with the assistance of precise methicillin-resistant (MRSA) testing. However, traditional methods necessitate high-tech tools, rigorous temperature cycling, and the extraction of genetic material from MRSA cells. Her...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of microbiology and biotechnology 2024, 34(1), , pp.192-197
Hauptverfasser: Cao, Hongli, Zhang, Guosheng, Ma, Hui, Xue, Zhongwen, Huo, Ran, Wang, Kun, Liu, Zijin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Refractory infections, such as hospital-acquired pneumonia, can be better diagnosed with the assistance of precise methicillin-resistant (MRSA) testing. However, traditional methods necessitate high-tech tools, rigorous temperature cycling, and the extraction of genetic material from MRSA cells. Herein, we propose a sensitive, specific, and extraction-free strategy for MRSA detection by integrating allosteric probe-based target recognition and exonuclease-III (Exo-III)-enhanced color reaction. The penicillin-binding protein 2a (PBP2a) aptamer in the allosteric probe binds with MRSA to convert protein signals to nucleic acid signals. This is followed by the DNA polymerase-assisted target recycle and the production of numerous single-strand DNA (ssDNA) chains which bind with silver ion (Ag ) aptamer to form a blunt terminus that can be identified by Exo-III. As a result, the Ag aptamer pre-coupled to magnetic nanoparticles is digested. After magnetic separation, the Ag in liquid supernatant catalyzes 3,3',5,5'-tetramethylbenzidine (TMB) for a color reaction. In addition, a concentration of 54 cfu/mL is predicted to be the lowest detectable value. Based on this, our assay has a wide linear detection range, covering 5 orders of magnitude and demonstrating a high specificity, which allows it to accurately distinguish the target MRSA from other microorganisms.
ISSN:1017-7825
1738-8872
DOI:10.4014/jmb.2308.08044