RCLSTMNet: A Residual-convolutional-LSTM Neural Network for Forecasting Cutterhead Torque in Shield Machine

During tunneling process, it is of critical importance to dynamically adjust operation parameters of shield machine due to changes of geological conditions. Cutterhead torque is one of the key load parameters, and its accurate prediction could adjust operational parameters including cutterhead rotat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of control, automation, and systems 2024, Automation, and Systems, 22(2), , pp.705-721
Hauptverfasser: Qin, Chengjin, Shi, Gang, Tao, Jianfeng, Yu, Honggan, Jin, Yanrui, Xiao, Dengyu, Liu, Chengliang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During tunneling process, it is of critical importance to dynamically adjust operation parameters of shield machine due to changes of geological conditions. Cutterhead torque is one of the key load parameters, and its accurate prediction could adjust operational parameters including cutterhead rotational speed and tunneling speed in advance and avoid potential cutterhead jamming. Based on operation and state data collected by the monitoring system, we propose a residual-convolutional-LSTM neural network (RCLSTMNet) for forecasting cutter head torque in shield machine. On the basis of correlation analysis, parameters closely related to cutter head torque are selected as inputs by employing cosine similarity, which significantly reduces input dimension. Convolutional-LSTM neural network is fused and constructed for extracting deep useful features, while residual network module is utilized to avoid gradient disappearing and improve regression performance. Comparisons with recent data-driven cutterhead torque prediction methods are made on the actual engineering datasets, which demonstrate the presented RCLSTMNet outperforms the other data driven models in most cases. Moreover, the predicted curves of cutterhead torque using the proposed RCLSTMNet coincide with the actual curves much better than predicted curves using the other models. Meanwhile, the highest and average accuracy of RCLSTMNnet reach 98.1% and 95.6%, respectively.
ISSN:1598-6446
2005-4092
DOI:10.1007/s12555-022-0104-x