Research on Chinese Microblog Sentiment Classification Based on TextCNN-BiLSTM Model

Currently, most sentiment classification models on microblogging platforms analyze sentence parts of speechand emoticons without comprehending users’ emotional inclinations and grasping moral nuances. This studyproposes a hybrid sentiment analysis model. Given the distinct nature of microblog commen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of information processing systems 2023, 19(6), 84, pp.842-857
Hauptverfasser: Haiqin Tang, Ruirui Zhang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Currently, most sentiment classification models on microblogging platforms analyze sentence parts of speechand emoticons without comprehending users’ emotional inclinations and grasping moral nuances. This studyproposes a hybrid sentiment analysis model. Given the distinct nature of microblog comments, the modelemploys a combined stop-word list and word2vec for word vectorization. To mitigate local information loss,the TextCNN model, devoid of pooling layers, is employed for local feature extraction, while BiLSTM isutilized for contextual feature extraction in deep learning. Subsequently, microblog comment sentiments arecategorized using a classification layer. Given the binary classification task at the output layer and the numeroushidden layers within BiLSTM, the Tanh activation function is adopted in this model. Experimental findingsdemonstrate that the enhanced TextCNN-BiLSTM model attains a precision of 94.75%. This represents a1.21%, 1.25%, and 1.25% enhancement in precision, recall, and F1 values, respectively, in comparison to theindividual deep learning models TextCNN. Furthermore, it outperforms BiLSTM by 0.78%, 0.9%, and 0.9%in precision, recall, and F1 values. KCI Citation Count: 0
ISSN:1976-913X
2092-805X
DOI:10.3745/JIPS.04.0299