DRL-based Multi-UAV trajectory optimization for ultra-dense small cells
In this paper, we propose a deep reinforcement learning (DRL) based unmanned aerial vehicles (UAV)-assisted trajectory optimization for ultra-dense small cell networks. We assume that each UAV is equipped with a sensing radio to obtain distance information to the UEs and other UAVs in the network wh...
Gespeichert in:
Veröffentlicht in: | ICT express 2023, 9(6), , pp.1128-1132 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a deep reinforcement learning (DRL) based unmanned aerial vehicles (UAV)-assisted trajectory optimization for ultra-dense small cell networks. We assume that each UAV is equipped with a sensing radio to obtain distance information to the UEs and other UAVs in the network which are used to update the UAV’s trajectory. The proposed DRL-based system selects the optimal joint control actions for the UAVs that maximizes the system sum-rate. The simulation results show that the proposed DRL-based UAV controller provides fast UAV placement in the network with a high system performance when compared with the benchmark schemes. |
---|---|
ISSN: | 2405-9595 2405-9595 |
DOI: | 10.1016/j.icte.2023.05.007 |