DRL-based Multi-UAV trajectory optimization for ultra-dense small cells

In this paper, we propose a deep reinforcement learning (DRL) based unmanned aerial vehicles (UAV)-assisted trajectory optimization for ultra-dense small cell networks. We assume that each UAV is equipped with a sensing radio to obtain distance information to the UEs and other UAVs in the network wh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ICT express 2023, 9(6), , pp.1128-1132
Hauptverfasser: Orikumhi, Igbafe, Bae, Jungsook, Park, Hyunwoo, Kim, Sunwoo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a deep reinforcement learning (DRL) based unmanned aerial vehicles (UAV)-assisted trajectory optimization for ultra-dense small cell networks. We assume that each UAV is equipped with a sensing radio to obtain distance information to the UEs and other UAVs in the network which are used to update the UAV’s trajectory. The proposed DRL-based system selects the optimal joint control actions for the UAVs that maximizes the system sum-rate. The simulation results show that the proposed DRL-based UAV controller provides fast UAV placement in the network with a high system performance when compared with the benchmark schemes.
ISSN:2405-9595
2405-9595
DOI:10.1016/j.icte.2023.05.007