Recent progress on drugs discovery study for treatment of COVID-19: repurposing existing drugs and current natural bioactive molecules

COVID-19 has been a major global health concern for the past three years, and currently we are still experiencing coronavirus patients in the following years. The virus, known as SARS-CoV-2, shares a similar genomic identity with previous viruses such as SARS-CoV and MERS-CoV. To combat the pandemic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied biological chemistry 2023, 66(0), , pp.1-48
Hauptverfasser: Oktavianawati, Ika, Santoso, Mardi, Bakar, Mohd Fadzelly Abu, Kim, Yong-Ung, Fatmawati, Sri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:COVID-19 has been a major global health concern for the past three years, and currently we are still experiencing coronavirus patients in the following years. The virus, known as SARS-CoV-2, shares a similar genomic identity with previous viruses such as SARS-CoV and MERS-CoV. To combat the pandemic, modern drugs discovery techniques such as in silico experiments for docking and virtual screening have been employed to design new drugs against COVID-19. However, the release of new drugs for human use requires two safety assessment steps consisting of preclinical and clinical trials. To bypass these steps, scientists are exploring the potential of repurposing existing drugs for COVID-19 treatment. This approach involves evaluating antiviral activity of drugs previously used for treating respiratory diseases against other enveloped viruses such as HPV, HSV, and HIV. The aim of this study is to review repurposing of existing drugs, traditional medicines, and active secondary metabolites from plant-based natural products that target specific protein enzymes related to SARS-CoV-2. The review also analyzes the chemical structure and activity relationship between selected active molecules, particularly flavonol groups, as ligands and proteins or active sites of SARS-CoV-2.
ISSN:2468-0842
2468-0834
2468-0842
DOI:10.1186/s13765-023-00842-x