Isolation and cultivation of freshwater diatom Nitzschia palea HY1 for increasing biomass and fucoxanthin production
Diatoms, a type of microalgae distributed worldwide, have been identified as potential sources of biomass, lipids, and high-value compounds. While marine diatoms have been extensively studied, the potential of freshwater diatoms still needs to be explored. In this study, a novel strain of freshwater...
Gespeichert in:
Veröffentlicht in: | Algae (Korean Phycological Society) 2023, 38(3), , pp.191-202 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diatoms, a type of microalgae distributed worldwide, have been identified as potential sources of biomass, lipids, and high-value compounds. While marine diatoms have been extensively studied, the potential of freshwater diatoms still needs to be explored. In this study, a novel strain of freshwater diatom was isolated from the Jungnangcheon stream located in Seoul, Republic of Korea (37°33'08.0" N, 127°02'40.0" E). This newly isolated strain was classified through phylogenetic analysis, and its morphology was investigated using light and electron microscopy; it was named Nitzschia palea HY1. N. palea HY1 grown in freshwater media (FDM) produced higher biomass (0.68 g L-1) and fucoxanthin production (9.19 mg L-1) than in conventional diatom media. Furthermore, increasing the bicarbonate concentration from 2 to 10 mM enhanced the maximum biomass and fucoxanthin production in FDM by 2.7 fold and 1.5 fold, respectively. Remarkably, the introduction of aeration to the modified FDM (MFDM) led to a substantial increase in the maximum biomass and fucoxanthin production of N. palea HY1, exhibiting 3.8-fold and 4.1-fold enhancement, respectively, compared to FDM alone. These findings suggest that optimizing the cultivation of N. palea HY1 using MFDM could provide an alternative to marine sources for fucoxanthin production. |
---|---|
ISSN: | 1226-2617 2093-0860 |
DOI: | 10.4490/algae.2023.38.9.3 |