Silver nanoparticles–decorated extracellular matrix graft: fabrication and tendon reconstruction performance

The reconstruction of tendons with large defects requires grafts with high mechanical strength and is often hindered by complications such as infection and adhesion. Hence, grafts combining the advantages of mechanical resilience and antibacterial/antiadhesion activity are highly sought after. The s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials research 2023, 27(00), , pp.2052-2070
Hauptverfasser: Chen, Sunfang, Cai, Dan, Dong, Qi, Ma, Gaoxiang, Xu, Chennan, Bao, Xiaogang, Yuan, Wei, Wu, Bing, Fang, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The reconstruction of tendons with large defects requires grafts with high mechanical strength and is often hindered by complications such as infection and adhesion. Hence, grafts combining the advantages of mechanical resilience and antibacterial/antiadhesion activity are highly sought after. The silver nanoparticles (GA-Ag NPs) synthesized from gallic acid and silver nitrate were attached to a decellularized extracellular matrix (Decellularized Tendon crosslinking GA-AgNPs, DT-Ag). We examined the histological structure, mechanical property, morphology, Zeta potential, cytotoxicity, antibacterial properties, antioxidant and anti-inflammatory properties, and ability of the DT-Ag to treat tendon defects in animals. Approximately 108.57 [+ or -] 0.94 [mu]g GA-Ag NPs loaded per 50 mg DT, the cross-linked part of GA-Ag NPs was 65.47 [+ or -] 0.57%, which provided DT-Ag with long-lasting antibacterial activity. Meanwhile, GA endowed DT-Ag with good antioxidant and anti-inflammatory activities. Additionally, The DT-Ag facilitated M2 macrophage polarization, and suppressed fibrin deposition by hindering fibroblast adhesion. Mormore, the main advantages of DT-Ag, namely its long-lasting antibacterial activity (tested using Escherichia coli and Staphylococcus aureus as models) and the ability to prevent tissue adhesion were confirmed in vivo. The fabricated multifunctional tendon graft was highly hydrophilic, biocompatible, and mechanically resilient, and concluded to be well suited for dealing with the main complications of surgical tendon reconstruction and has bright application prospects.
ISSN:2055-7124
1226-4601
2055-7124
DOI:10.1186/s40824-023-00428-0