Towards comprehensive evaluation of the FLEXotendon glove-III: a case series evaluation in pediatric clinical cases and able-bodied adults

Injuries involving the nervous system, such as a brachial plexus palsy or traumatic brain injury, can lead to impairment in the functionality of the hand. Assistive robotics have been proposed as a possible method to improve patient outcomes in rehabilitation. The work presented here evaluates the F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical engineering letters 2023, 13(3), , pp.485-494
Hauptverfasser: Tran, Phillip, Elliott, Drew, Herrin, Kinsey, Desai, Jaydev P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Injuries involving the nervous system, such as a brachial plexus palsy or traumatic brain injury, can lead to impairment in the functionality of the hand. Assistive robotics have been proposed as a possible method to improve patient outcomes in rehabilitation. The work presented here evaluates the FLEXotendon Glove-III, a 5 degree-of-freedom, voice-controlled, tendon-driven soft robotic hand exoskeleton, with two human subjects with hand impairments and four able-bodied subjects. The FLEXotendon Glove-III was evaluated on four unimpaired subjects, in conjunction with EMG sensor data, to determine the quantitative performance of the glove in applied pinch force, perturbation resistance, and exertion reduction. The exoskeleton system was also evaluated on two subjects with hand impairments, using two standardized hand function tests, the Jebsen-Taylor Hand Function Test and the Toronto Rehabilitation Institute Hand Function Test. The subjects were also presented with three qualitative questionnaires, the Capabilities of Upper Extremities Questionnaire, the Quebec User Evaluation of Satisfaction with Assistive Technology, and the Orthotics Prosthetics User Survey—Satisfaction module. From the previous design, minor design changes were made to the exoskeleton. The quick connect system was redesigned for improved performance, the number of motors was reduced to decrease overall footprint, and the entire system was placed into a compact acrylic case that can be placed into a backpack for increased portability.
ISSN:2093-9868
2093-985X
DOI:10.1007/s13534-023-00280-0