Improving performance of medical image alignment through super-resolution

Medical image alignment is an important tool for tracking patient conditions, but the quality of alignment is influenced by the effectiveness of low-dose Cone-beam CT (CBCT) imaging and patient characteristics. To address these two issues, we propose an unsupervised alignment method that incorporate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomedical engineering letters 2023, 13(3), , pp.397-406
Hauptverfasser: Deng, Liwei, Zhang, Yuanzhi, Wang, Jing, Huang, Sijuan, Yang, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Medical image alignment is an important tool for tracking patient conditions, but the quality of alignment is influenced by the effectiveness of low-dose Cone-beam CT (CBCT) imaging and patient characteristics. To address these two issues, we propose an unsupervised alignment method that incorporates a preprocessing super-resolution process. We constructed the model based on a private clinical dataset and validated the enhancement of the super-resolution on alignment using clinical and public data. Through all three experiments, we demonstrate that higher resolution data yields better results in the alignment process. To fully constrain similarity and structure, a new loss function is proposed; Pearson correlation coefficient combined with regional mutual information. In all test samples, the newly proposed loss function obtains higher results than the common loss function and improve alignment accuracy. Subsequent experiments verified that, combined with the newly proposed loss function, the super-resolution processed data boosts alignment, can reaching up to 9.58%. Moreover, this boost is not limited to a single model, but is effective in different alignment models. These experiments demonstrate that the unsupervised alignment method with super-resolution preprocessing proposed in this study effectively improved alignment and plays an important role in tracking different patient conditions over time.
ISSN:2093-9868
2093-985X
DOI:10.1007/s13534-023-00268-w