Condensable InP quantum dots solid
Colloidal thioacetic acid-capped InP quantum dots (InP-TAA QDs) and their spin coated-films have been examined in comparison with those of myristic acid-capped InP (InP-MA) QDs. While the QDs are far away from each other in the InP-MA QD films, even in a InP-MA QD film cured at 250 °C, upon thermal...
Gespeichert in:
Veröffentlicht in: | Current applied physics 2013, 13(6), , pp.1075-1081 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Colloidal thioacetic acid-capped InP quantum dots (InP-TAA QDs) and their spin coated-films have been examined in comparison with those of myristic acid-capped InP (InP-MA) QDs. While the QDs are far away from each other in the InP-MA QD films, even in a InP-MA QD film cured at 250 °C, upon thermal annealing a film of InP-TAA QDs at 250 °C, the indium thioacetate groups on the surfaces QDs likely condensed, thus resulting in the QD film that consists of individual and proximally packed InP QDs. The structures of the films of InP-MA QDs or InP-TAA QDs were characterized by means of TEM, XRD, and XPS. The current through the film of InP-TAA QDs cured at 250 °C was about 2–5 orders of magnitude higher than that of the film of InP-MA film annealed by the sample conditions. We, newly in this letter, define this kind of materials architecture as the condensable QDs solid concept. |
---|---|
ISSN: | 1567-1739 1878-1675 |
DOI: | 10.1016/j.cap.2013.02.017 |