SEMI-SYMMETRIC STRUCTURE JACOBI OPERATOR FOR REAL HYPERSURFACES IN THE COMPLEX QUADRIC
In this paper, we introduce the notion of {\it semi-symmetric structure Jacobi operator } for Hopf real hypersufaces in the complex quad\-ric $Q^m = SO_{m+2}/SO_mSO_2$. Next we prove that there does not exist any Hopf real hypersurface in the complex quadric $Q^m = SO_{m+2}/SO_mSO_2$ with semi-symme...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2023, 60(4), , pp.849-861 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we introduce the notion of {\it semi-symmetric structure Jacobi operator } for Hopf real hypersufaces in the complex quad\-ric $Q^m = SO_{m+2}/SO_mSO_2$. Next we prove that there does not exist any Hopf real hypersurface in the complex quadric $Q^m = SO_{m+2}/SO_mSO_2$ with semi-symmetric structure Jacobi operator. As a corollary, we also get a non-existence property of Hopf real hypersurfaces in the complex quadric $Q^m$ with either symmetric (parallel), or recurrent structure Jacobi operator. KCI Citation Count: 0 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b220152 |