Multiscale simulations for estimating mechanical properties of ion irradiated 308 based on microstructural features

Austenitic stainless steel welds (ASSWs) of nuclear components undergo aging-related degradations caused by high temperature and neutron radiation. Since irradiation leads to the change of material characteristics, relevant quantification is important for long-term operation, but limitations exist....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and technology 2023, 55(8), , pp.2823-2834
Hauptverfasser: Kwak, Dong-Hyeon, Sim, Jae Min, Chang, Yoon-Suk, Kong, Byeong Seo, Jang, Changheui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Austenitic stainless steel welds (ASSWs) of nuclear components undergo aging-related degradations caused by high temperature and neutron radiation. Since irradiation leads to the change of material characteristics, relevant quantification is important for long-term operation, but limitations exist. Although ion irradiation is utilized to emulate neutron irradiation, its penetration depth is too shallow to measure bulk properties. In this study, a systematic approach was suggested to estimate mechanical properties of ion irradiated 308 ASSW. First of all, weld specimens were irradiated by 2 MeV proton to 1 and 10 dpa. Microstructure evolutions due to irradiation in δ-ferrite and austenite phases were characterized and micropillar compression tests were performed. In succession, dislocation density based stress-strain (S–S) relationships and quantification models of irradiation defects were adopted to define phases in finite element analyses. Resultant microscopic S–S curves were compared to verify material parameters. Finally, macroscopic behaviors were calculated by multiscale simulations using real microstructure based representative volume element (RVE). Validity of the approach was verified for the unirradiated specimens such that the estimated S–S curves and 0.2% offset yield strengths (YSs) which was 363.14 MPa were in 10% agreement with test. For irradiated specimens, the estimated YS were 917.41 MPa in 9% agreement.
ISSN:1738-5733
2234-358X
DOI:10.1016/j.net.2023.05.011