MGGC2.0: A preprocessing code for the multi-group cross section of the fast reactor with ultrafine group library

How to generate the precise broad group cross section is important for the fast reactor design. In this study, a fast reactor multi-group cross-section generation code MGGC2.0 are developed in-house for processing ultrafine group MATXS format library. Validation and verification are performed for MG...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and technology 2023, 55(8), , pp.2785-2796
Hauptverfasser: Hu, Kui, Ma, Xubo, Zhang, Teng, Ma, Xuan, Huang, Zifeng, Chen, Yixue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:How to generate the precise broad group cross section is important for the fast reactor design. In this study, a fast reactor multi-group cross-section generation code MGGC2.0 are developed in-house for processing ultrafine group MATXS format library. Validation and verification are performed for MGGC2.0 code by applying the benchmarks of ICSBEP handbook, and the results of MGGC2.0 agree well with that of MCNP. The consistent PN method with critical buckling search is in good agreement that condensed with TWODANT flux and flux moment for the inner core and outer core region. For the radial blanket and reflector, two region approximation method has been applied in MGGC2.0 by using collision Probability Method neutron flux solver. The RBEC-M benchmark was used to verify the power distribution calculation, and the relative error of power distribution comparison with the reference are less than 0.8% in the fuel region and the maximum relative error is 5.58% in the reflector region. Therefore, the precise broad cross section can be generated by MGGC2.0 for fast reactor.
ISSN:1738-5733
2234-358X
DOI:10.1016/j.net.2023.05.005