Open datasets in perioperative medicine: a narrative review

With the growing interest of researchers in machine learning and artificial intelligence (AI) based on large data, their roles in medical research have become increasingly prominent. Despite the proliferation of predictive models in perioperative medicine, external validation is lacking. Open datase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Anesthesia and pain medicine (Korean society of anesthesiologists) 2023, 18(3), , pp.213-219
Hauptverfasser: Lim, Leerang, Lee, Hyung-Chul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the growing interest of researchers in machine learning and artificial intelligence (AI) based on large data, their roles in medical research have become increasingly prominent. Despite the proliferation of predictive models in perioperative medicine, external validation is lacking. Open datasets, defined as publicly available datasets for research, play a crucial role by providing high-quality data, facilitating collaboration, and allowing an objective evaluation of the developed models. Among the available datasets for surgical patients, VitalDB has been the most widely used, with the Medical Informatics Operating Room Vitals and Events Repository recently launched and the Informative Surgical Patient dataset for Innovative Research Environment expected to be released soon. For critically ill patients, the available resources include the Medical Information Mart for Intensive Care, the eICU Collaborative Research Database, the Amsterdam University Medical Centers Database, and the High time Resolution ICU Dataset, with the anticipated release of the Intensive Care Network with Million Patients' information for the AI Clinical decision support system Technology dataset. This review presents a detailed comparison of each to enrich our understanding of these open datasets for data science and AI research in perioperative medicine.
ISSN:1975-5171
2383-7977
DOI:10.17085/apm.23076