MeV carbon ion irradiation-induced changes in the electrical conductivity of silver nanowire networks
MeV carbon ion irradiation-induced changes in the electrical conductivity of Silver nanowire (Ag-NW) networks is demonstrated systematically at different C+ ion fluences ranging from 1 × 1012 to 1 × 1016 ions/cm2 at room temperature. At low C+ ion fluences, the electrical conductivity of Ag-NWs decr...
Gespeichert in:
Veröffentlicht in: | Current applied physics 2015, 15(5), , pp.642-647 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | MeV carbon ion irradiation-induced changes in the electrical conductivity of Silver nanowire (Ag-NW) networks is demonstrated systematically at different C+ ion fluences ranging from 1 × 1012 to 1 × 1016 ions/cm2 at room temperature. At low C+ ion fluences, the electrical conductivity of Ag-NWs decreases and subsequently increases with increase fluence. Finally, at high C+ ion fluences, conductivity again decreases. The variation in the electrical conductivity of Ag NW network is discussed after analysis using scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. The observed increase in electrical conductivity is thought to be due to ion induced coalescence of Ag-NWs at contact position, which causes reduction of wire–wire contact resistance, while the decrease in electrical conductivity may be due to defect production by C+ ions into Ag-NWs. Ion beam technology is therefore a very promising technology that is capable of fabricating highly conductive Ag-NW networks for transparent electrodes. Moreover, a method for thinning, slicing and cutting of Ag-NWs using ion beam technology is also reported. |
---|---|
ISSN: | 1567-1739 1878-1675 |
DOI: | 10.1016/j.cap.2015.02.023 |