Relaxation dynamics and fragility during liquideglass transitions of poly(propylene glycol)s

The acoustic and thermal properties of the liquideglass transitions of propylene glycol and its oligomers, poly (propylene glycol)s, were studied by temperature modulated DSC and Brillouin scattering. The fragility indices were determined from Angell plots using the observed modulation frequency dep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current applied physics 2015, 15(7), , pp.805-810
Hauptverfasser: Shota Koda, Tomohiko Shibata, 박인성, Seiji Kojima
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The acoustic and thermal properties of the liquideglass transitions of propylene glycol and its oligomers, poly (propylene glycol)s, were studied by temperature modulated DSC and Brillouin scattering. The fragility indices were determined from Angell plots using the observed modulation frequency dependence of the complex heat capacity. The variation in the glass transition temperatures is discussed on the basis of the free volume theory. The relaxation time of the structural relaxation obeys the VogeleFulcher law, and its high frequency end is in good agreement with the result of the dielectric measurement in the literature. The correlation between the observed thermal expansion coefficients and the glass transition temperature is discussed based on the free volume theory. The sound velocity and attenuation were accurately determined as a function of the temperature by Brillouin scattering by combination with the refractive index measurement. The relaxation dynamics were discussed by considering the relaxation from segmental motions. All of these physical properties were discussed based on the third-order anharmonicity and the Grüneisen parameter. KCI Citation Count: 5
ISSN:1567-1739
1878-1675