Practical methods for GPU-based whole-core Monte Carlo depletion calculation

Several practical methods for accelerating the depletion calculation in a GPU-based Monte Carlo (MC) code PRAGMA are presented including the multilevel spectral collapse method and the vectorized Chebyshev rational approximation method (CRAM). Since the generation of microscopic reaction rates for e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and technology 2023, 55(7), , pp.2516-2533
Hauptverfasser: Kim, Kyung Min, Choi, Namjae, Lee, Han Gyu, Joo, Han Gyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Several practical methods for accelerating the depletion calculation in a GPU-based Monte Carlo (MC) code PRAGMA are presented including the multilevel spectral collapse method and the vectorized Chebyshev rational approximation method (CRAM). Since the generation of microscopic reaction rates for each nuclide needed for the construction of the depletion matrix of the Bateman equation requires either enormous memory access or tremendous physical memory, both of which are quite burdensome on GPUs, a new method called multilevel spectral collapse is proposed which combines two types of spectra to generate microscopic reaction rates: an ultrafine spectrum for an entire fuel pin and coarser spectra for each depletion region. Errors in reaction rates introduced by this method are mitigated by a hybrid usage of direct online reaction rate tallies for several important fissile nuclides. The linear system to appear in the solution process adopting the CRAM is solved by the Gauss-Seidel method which can be easily vectorized on GPUs. With the accelerated depletion methods, only about 10% of MC calculation time is consumed for depletion, so an accurate full core cycle depletion calculation for a commercial power reactor (BEAVRS) can be done in 16 h with 24 consumer-grade GPUs.
ISSN:1738-5733
2234-358X
DOI:10.1016/j.net.2023.04.021