In vitro repress of breast cancer by bio-product of edible Pleurotus ostreatus loaded with chitosan nanoparticles
Despite advances in early detection and therapy, cancer still is a significant health challenge with the highest priority for investigation. Breast cancer represents the most common cancerous disease among women in the world. The study’s purpose is to estimate the cytotoxic activity of the edible mu...
Gespeichert in:
Veröffentlicht in: | Applied biological chemistry 2023, 66(0), , pp.1-14 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Despite advances in early detection and therapy, cancer still is a significant health challenge with the highest priority for investigation. Breast cancer represents the most common cancerous disease among women in the world. The study’s purpose is to estimate the cytotoxic activity of the edible mushroom
Pleurotus ostreatus
extract (PE), chitosan nanoparticles (ChNPs), and PE loaded with ChNPs (PELChNPs), as well as to identify the molecular docking of the cytotoxicity of methyl gallate (MG) as a main component of the PE against breast cancer (MCF-7) cell line. High-performance liquid chromatography (HPLC) analysis of PE exhibited the existence of various phenolic and flavonoid compounds such as MG, gallic acid, chlorogenic acid, hesperetin, naringenin, rutin, and cinnamic acid. The proliferation of the MCF-7 cell line was inhibited at 1, 3.9, and 62.50 µg/mL of PELChNPs, PE, and ChNPs, respectively. PELChNPs were more effective against the MCF-7 cell line than PE, particularly at low concentrations. For instance, at 7.8 µg/mL of PELChNPs and PE, the inhibitory % of MCF-7 proliferation was 20.59±1.75% and 8.57±0.59%, respectively. At 15.6 µg/mL of PELChNPs and PE, the inhibitory % of MCF-7 proliferation was 51.37±1.09% and 25.18±1.64%, respectively. While there is slight difference in the inhibition % of MCF-7 cells (98.64±0.21 and 97.22±0.16%) at high concentration 500 µg/mL of PELChNPs and PE, respectively. IC
50
was 15.25 ± 0.54 µg/mL, 46.27 ± 1.94 µg/mL, and 337.38 ± 13.68 µg/mL against MCF-7 cell line of PELChNPs, PE, and ChNPs, respectively. The value of IC
50
documented the efficacy of PELChNPs compared with the IC
50
(5.91 ± 0.43 µg/mL) of Vinblastine sulfate. Noticeable distortions were observed in the MCF-7 cell line mainly treated with PELChNPs, followed by PE alone. While ChNPs exhibited less effect on the morphology of the MCF-7 cell line. Antioxidant activity of ChNPs, PE, and PELChNPs was evaluated compared with Trolox, which reflected IC
50
= 118.33 ± 4.02, 85.63 ± 3.96, 36.80 ± 2.52 and 24.74 ± 0.45 µg/mL. Methyl gallate binding interactions were assessed using molecular docking with the MOE-Dock tool against the target crystal structures of Breast cancer cell line 3HB5. The results shed light on how molecular modeling techniques can inhibit methyl gallate with possible uses in treating breast cancer. |
---|---|
ISSN: | 2468-0842 2468-0834 2468-0842 |
DOI: | 10.1186/s13765-023-00788-0 |