Correlation between the concentration of TeO2 and the radiation shielding properties in the TeO2–MoO3–V2O5 glass system
We investigated the radiation shielding competence for TeO2–V2O5–MoO3 glasses. The Phy-X software was used to report the radiation shielding parameters for the present glasses. With an increase in TeO2 and MoO3 content, the samples' linear attenuation coefficient improves. However, at low energ...
Gespeichert in:
Veröffentlicht in: | Nuclear engineering and technology 2023, 55(4), , pp.1218-1224 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigated the radiation shielding competence for TeO2–V2O5–MoO3 glasses. The Phy-X software was used to report the radiation shielding parameters for the present glasses. With an increase in TeO2 and MoO3 content, the samples' linear attenuation coefficient improves. However, at low energies, this change is more apparent. At low energy, the present samples have an effective atomic number (Zeff) that is relatively high (in order of 16.17–24.48 at 0.347 MeV). In addition, the findings demonstrated that the density of the samples is a very critical factor in determining the half value layer (HVL). The minimal HVL for each sample can be found at 0.347 MeV and corresponds to 1.776, 1.519, 1.391, 1.210 and 1.167 cm for Te1 to Te5 respectively. However, the highest HVL of these glasses is recorded at 1.33 MeV, which corresponds to 3.773, 3.365, 3.218, 2.925 and 2.908 cm respectively. The tenth value layer results indicate that the thickness of the specimens needs to be increased in order to shield the photons that have a greater energy. Also, the TVL results demonstrated that the sample with the greatest TeO2 and MoO3 concentration has a higher capacity to attenuate photons. |
---|---|
ISSN: | 1738-5733 2234-358X |
DOI: | 10.1016/j.net.2022.12.014 |