NEW EXTENSION FOR REVERSE OF THE OPERATOR CHOI-DAVIS-JENSEN INEQUALITY
In this paper, we introduce the reverse of the operator Davis- Choi-Jensen’s inequality. Our results are employed to establish a new bound for the Furuta inequality. More precisely, we prove that, if A,B ∈ B (H) are self-adjoint operators with the spectra contained in the interval [m,M] with m <...
Gespeichert in:
Veröffentlicht in: | Honam mathematical journal 2023, 45(1), , pp.123-129 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we introduce the reverse of the operator Davis- Choi-Jensen’s inequality. Our results are employed to establish a new bound for the Furuta inequality. More precisely, we prove that, if A,B ∈ B (H) are self-adjoint operators with the spectra contained in the interval [m,M] with m < M and A ≤ B, then for any r ≥ 1 t > 1, t ∈ (0, 1) Ar ≤ ( M1H − A / M − m mrt + A − m1H M − m Mrt ) 1/t ≤ K (m,M, r)Br, where K (m,M, r) is the generalized Kantorovich constant. KCI Citation Count: 0 |
---|---|
ISSN: | 1225-293X 2288-6176 |
DOI: | 10.5831/HMJ.2023.45.1.123 |