NEW EXTENSION FOR REVERSE OF THE OPERATOR CHOI-DAVIS-JENSEN INEQUALITY

In this paper, we introduce the reverse of the operator Davis- Choi-Jensen’s inequality. Our results are employed to establish a new bound for the Furuta inequality. More precisely, we prove that, if A,B ∈ B (H) are self-adjoint operators with the spectra contained in the interval [m,M] with m <...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Honam mathematical journal 2023, 45(1), , pp.123-129
Hauptverfasser: Baharak Moosavi, Mohsen Shah Hosseini
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce the reverse of the operator Davis- Choi-Jensen’s inequality. Our results are employed to establish a new bound for the Furuta inequality. More precisely, we prove that, if A,B ∈ B (H) are self-adjoint operators with the spectra contained in the interval [m,M] with m < M and A ≤ B, then for any r ≥ 1 t > 1, t ∈ (0, 1) Ar ≤ ( M1H − A / M − m mrt + A − m1H M − m Mrt ) 1/t ≤ K (m,M, r)Br, where K (m,M, r) is the generalized Kantorovich constant. KCI Citation Count: 0
ISSN:1225-293X
2288-6176
DOI:10.5831/HMJ.2023.45.1.123