합성곱 신경망 기반의 딥러닝을 이용한 섬유 강화 복합재료의 적층 각도 예측

섬유 강화 복합재료는 방향성을 가지고 있기 때문에 적층 순서에 따라서 구조물의 기계적인 특성은 매우 달라질 수 있다. 따라서, 상황과 용도에 따른 복합재료 구조물의 적층 설계는 필수적이다. 그러나 제작된 복합재료 구조물의 적층 각도는 제작 환경이나 구조물 형상에 따라 설계 값과 편차를 가지는 경우가 많으며, 이는 구조적 성능에 영향을 끼칠 수 있다. 따라서 구조물의 신뢰성 확보를 위해서는 적층 설계 뿐만 아니라 제작된 복합재료의 적층각에 대한 분석 또한 매우 중요하다. 본 연구에서는 합성곱 신경망(Convolutional neura...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites Research(구 한국복합재료학회지) 2023, 36(1), , pp.48-52
Hauptverfasser: 홍현수, Hyunsoo Hong, 김원기, Wonki Kim, 전도윤, Do Yoon Jeon, 이관호, Kwanho Lee, 김성수, Seong Su Kim
Format: Artikel
Sprache:kor
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:섬유 강화 복합재료는 방향성을 가지고 있기 때문에 적층 순서에 따라서 구조물의 기계적인 특성은 매우 달라질 수 있다. 따라서, 상황과 용도에 따른 복합재료 구조물의 적층 설계는 필수적이다. 그러나 제작된 복합재료 구조물의 적층 각도는 제작 환경이나 구조물 형상에 따라 설계 값과 편차를 가지는 경우가 많으며, 이는 구조적 성능에 영향을 끼칠 수 있다. 따라서 구조물의 신뢰성 확보를 위해서는 적층 설계 뿐만 아니라 제작된 복합재료의 적층각에 대한 분석 또한 매우 중요하다. 본 연구에서는 합성곱 신경망(Convolutional neural network; CNN) 기반의 딥러닝(Deep learning)을 이용하여 섬유 강화 복합재료의 실제 단면 이미지로부터 적층 각도를 예측하였다. 여러 적층 각도를 가지는 탄소 섬유 강화 복합재료 시편을 제작하고, 광학 현미경을 이용하여 Micro-scale로 실제 단면을 촬영하였다. 다양한 적층 각도에 따른 복합재료 시편의 단면 이미지 데이터를 이용하여 합성곱 신경망 기반의 딥러닝 모델에 대하여 학습을 수행하였다. 그 결과 높은 정확도로 실제 섬유 강화 복합재료 단면 이미지로부터 적층 각도를 예측할 수 있었다. Fiber-reinforced composites have anisotropic material properties, so the mechanical properties of composite structures can vary depending on the stacking sequence. Therefore, it is essential to design the proper stacking sequence of composite structures according to the functional requirements. However, depending on the manufacturing condition or the shape of the structure, there are many cases where the designed stacking angle is out of range, which can affect structural performance. Accordingly, it is important to analyze the stacking angle in order to confirm that the composite structure is correctly fabricated as designed. In this study, the stacking angle was predicted from real cross-sectional images of fiber-reinforced composites using convolutional neural network (CNN)-based deep learning. Carbon fiber-reinforced composite specimens with several stacking angles were fabricated and their cross-sections were photographed on a micro-scale using an optical microscope. The training was performed for a CNN-based deep learning model using the cross-sectional image data of the composite specimens. As a result, the stacking angle can be predicted from the actual cross-sectional image of the fiber-reinforced composite with high accuracy.
ISSN:2288-2103
2288-2111