A control technique for hybrid floating offshore wind turbines using oscillating water columns for generated power fluctuation reduction
The inherent oscillating dynamics of floating offshore wind turbines (FOWTs) might result in undesirable oscillatory behavior in both the system states and the generated power outputs, leading to unwanted effects on critical, extreme, and fatigue loads, and finally to a premature failure of the faci...
Gespeichert in:
Veröffentlicht in: | Journal of Computational Design and Engineering 2023, 10(1), , pp.250-265 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The inherent oscillating dynamics of floating offshore wind turbines (FOWTs) might result in undesirable oscillatory behavior in both the system states and the generated power outputs, leading to unwanted effects on critical, extreme, and fatigue loads, and finally to a premature failure of the facility. Therefore, this kind of system should be capable of lessening such undesired effects. In this article, four oscillating water columns (OWC) have been installed within a FOWT barge-type platform. A novel switching control technique has been developed in order to reduce oscillations of the system created by both wind and wave, as well as the fluctuations in the generated power, by adequately regulating the airflow control valves. While the impact of the coupled wind-wave loads has been considered, a set of representative case studies have been taken into account for a range of regular waves and wind speeds. The study relies on the use of response amplitude operators (RAO) that have been pre-processed and evaluated in order to apply the switching control technique. In this sense, the starting time of the switching for below-rated, rated, and above-rated wind speeds have been calculated using the platform’s corresponding pitch RAO. Additionally, the blades’ pitch and generator torque have also been regulated by means of a constant torque variable speed controller to capture maximum energy for below-rated wind speed conditions and to match the rated generator power for rated and above-rated wind speed conditions, respectively. In order to peruse the feasibility and performance of the proposed strategy, a comparison has been carried out between the uncontrolled traditional barge-type platform and the controlled OWCs-based barge FOWT. The results demonstrate that the proposed control approach can effectively and successfully decrease both the oscillations in the system’s modes and the fluctuations in the generated power. |
---|---|
ISSN: | 2288-5048 2288-4300 2288-5048 |
DOI: | 10.1093/jcde/qwac137 |