Advanced bibliometric analysis on the coupling of energetic dark greenhouse with natural gas combined cycle power plant for CO2 captur
Increasing energy demand along with environmental effects of fossil fuels have created serious environmental, economic, and social challenges for societies. To respond to these challenges, greenhouse gas (GHG) reduction strategies such as diffusion and adoption of renewable energy (RE) technologies...
Gespeichert in:
Veröffentlicht in: | The Korean journal of chemical engineering 2022, 39(11), 272, pp.3021-3031 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Increasing energy demand along with environmental effects of fossil fuels have created serious environmental, economic, and social challenges for societies. To respond to these challenges, greenhouse gas (GHG) reduction strategies such as diffusion and adoption of renewable energy (RE) technologies and carbon capturing techniques are two of the important solutions. The most important GHG emissions sources are Coal-Fired power plants and Natural Gas Combined-Cycle (NGCC) power plants. One way to help reduce GHG emissions, especially CO2 emissions, is to use energetic dark greenhouse. Greenhouse uses sunlight and CO2 to grow and produce O2 based on the photosynthesis process. Therefore, it has a great potential for CO2 capturing and utilization that a few research has considered this potential. This paper investigates CO2 Capture by greenhouse from combined cycle power plants using bibliometric analysis and data mining. According to the main keywords in the studies by VOSViewer software, a word cloud is obtained from all related topics. The number of articles published in different years are obtained and each of the cluster’s placement in each Cooperative Patent Classification (CPC) is examined by Google Patent and International Patent Classification (IPC). Finally, data-mining analysis based on the bibliometric method to find the research progresses, trends, and existing gaps to look at energetic dark greenhouse as a CO2 capturing technology is used. Market failures are identified and from a policy perspective, solutions to improve those failures are proposed. It is concluded that one of the best CCS technologies at the NGCC power plant is coupling it with energetic dark greenhouse due to lower regeneration energy. KCI Citation Count: 3 |
---|---|
ISSN: | 0256-1115 1975-7220 |
DOI: | 10.1007/s11814-022-1233-x |