Relative Rota-Baxter systems on Leibniz algebras

In this paper, we introduce relative Rota-Baxter systems on Leibniz algebras and give some characterizations and new constructions. Then we construct a graded Lie algebra whose Maurer-Cartan elements are relative Rota-Baxter systems. This allows us to define a cohomology theory associated with a rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2023, 60(2), , pp.303-325
Hauptverfasser: Apurba Das, Shuangjian Guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we introduce relative Rota-Baxter systems on Leibniz algebras and give some characterizations and new constructions. Then we construct a graded Lie algebra whose Maurer-Cartan elements are relative Rota-Baxter systems. This allows us to define a cohomology theory associated with a relative Rota-Baxter system. Finally, we study formal deformations and extendibility of finite order deformations of a relative Rota-Baxter system in terms of the cohomology theory. KCI Citation Count: 0
ISSN:0304-9914
2234-3008
DOI:10.4134/JKMS.j210676