THE NILPOTENCY OF THE PRIME RADICAL OF A GOLDIE MODULE

With the notion of prime submodule defined by F. Raggi et al.~we prove that the intersection of all prime submodules of a Goldie module $M$ is a nilpotent submodule provided that $M$ is retractable and $M^{(\Lambda)}$-projective for every index set $\Lambda$. This extends the well known fact that in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2023, 60(1), , pp.185-201
Hauptverfasser: John A. Beachy, Mauricio Medina-Barcenas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the notion of prime submodule defined by F. Raggi et al.~we prove that the intersection of all prime submodules of a Goldie module $M$ is a nilpotent submodule provided that $M$ is retractable and $M^{(\Lambda)}$-projective for every index set $\Lambda$. This extends the well known fact that in a left Goldie ring the prime radical is nilpotent. KCI Citation Count: 0
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.b220053