THE NILPOTENCY OF THE PRIME RADICAL OF A GOLDIE MODULE
With the notion of prime submodule defined by F. Raggi et al.~we prove that the intersection of all prime submodules of a Goldie module $M$ is a nilpotent submodule provided that $M$ is retractable and $M^{(\Lambda)}$-projective for every index set $\Lambda$. This extends the well known fact that in...
Gespeichert in:
Veröffentlicht in: | Taehan Suhakhoe hoebo 2023, 60(1), , pp.185-201 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the notion of prime submodule defined by F. Raggi et al.~we prove that the intersection of all prime submodules of a Goldie module $M$ is a nilpotent submodule provided that $M$ is retractable and $M^{(\Lambda)}$-projective for every index set $\Lambda$. This extends the well known fact that in a left Goldie ring the prime radical is nilpotent. KCI Citation Count: 0 |
---|---|
ISSN: | 1015-8634 2234-3016 |
DOI: | 10.4134/BKMS.b220053 |