Facile synthesis of rGO/PANI/ZnO ternary nanocomposites for energy storage devices
Due to the dire energy needs and the unavailability of energy storage devices, supercapacitors have become an inescapable substitute for energy storage systems. As a high energy density electrode material, we offer rGO/PANI/ZnO ternary nanocomposite designed via the polymerization method and are cha...
Gespeichert in:
Veröffentlicht in: | Hanʼguk Seramik Hakhoe chi 2023, 60(1), 404, pp.127-140 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Due to the dire energy needs and the unavailability of energy storage devices, supercapacitors have become an inescapable substitute for energy storage systems. As a high energy density electrode material, we offer rGO/PANI/ZnO ternary nanocomposite designed via the polymerization method and are characterized by various analytical techniques. The results show that rGO/PANI/ZnO has the best capacitive behavior, with a specific capacity of 1546 F/g at 2 mV/s on the eggshell membrane electrode (ESME). The nanocomposite rGO/PANI/ZnO, on the other hand, presented the best cycling stability, retaining 97% of capacity after 3000 cycles. This is due to the fast transfer of electrons between rGO/ZnO and PANI in an electrochemical charge storage device. This research encompasses an enhanced flexible PANI-based electrode to become viable innovative wearable sensor alternative. |
---|---|
ISSN: | 1229-7801 2234-0491 2334-0491 |
DOI: | 10.1007/s43207-022-00250-9 |