Some Approximation Results by Bivariate Bernstein-Kantorovich Type Operators on a Triangular Domain
In this work, we define bivariate Bernstein-Kantorovich type operators on a triangular domain and obtain some approximation results for these operators. We start off by computing some moment estimates and prove a Korovkin type convergence theo rem. Then, we estimate the rate of convergence using the...
Gespeichert in:
Veröffentlicht in: | Kyungpook mathematical journal 2022, 62(3), , pp.467-484 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we define bivariate Bernstein-Kantorovich type operators on a triangular domain and obtain some approximation results for these operators. We start off by computing some moment estimates and prove a Korovkin type convergence theo rem. Then, we estimate the rate of convergence using the partial and complete modulus of continuity, and derive a Voronovskaya-type asymptotic theorem. Further, we calculate the order of approximation with regard to the Peetre’s K-functional and a Lipschitz type class. In addition, we construct the associated GBS type operators and compute the rate of approximation using the mixed modulus of continuity and class of the Lipschitz of Bogel continuous functions for these operators. Finally, we use the two operators to approximate example functions in order to compare their convergence. KCI Citation Count: 0 |
---|---|
ISSN: | 1225-6951 0454-8124 |
DOI: | 10.5666/KMJ.2022.62.3.467 |