On almost quasi-coherent rings and almost von Neumann rings

Let $R$ be a commutative ring with identity. We call the ring $R$ to be an almost quasi-coherent ring if for any finite set of elements $a_{1},\dots,a_{p}$ and $a$ of $R$, there exists a positive integer $m$ such that the ideals $\bigcap_{i=1}^p Ra_{i}^{m}$ and $Ann_{R}(a^{m})$ are finitely generate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Taehan Suhakhoe hoebo 2022, 59(5), , pp.1177-1190
Hauptverfasser: Haitham El Alaoui, Mourad El Maalmi, Hakima Mouanis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $R$ be a commutative ring with identity. We call the ring $R$ to be an almost quasi-coherent ring if for any finite set of elements $a_{1},\dots,a_{p}$ and $a$ of $R$, there exists a positive integer $m$ such that the ideals $\bigcap_{i=1}^p Ra_{i}^{m}$ and $Ann_{R}(a^{m})$ are finitely generated, and to be almost von Neumann regular rings if for any two elements $a$ and $b$ in $R$, there exists a positive integer $n$ such that the ideal $(a^{n}, b^{n})$ is generated by an idempotent element. This paper establishes necessary and sufficient conditions for the Nagata's idealization and the amalgamated algebra to inherit these notions. Our results allow us to construct original examples of rings satisfying the above-mentioned properties. KCI Citation Count: 0
ISSN:1015-8634
2234-3016
DOI:10.4134/BKMS.b210681