Weakly equivariant classification of small covers over a product of simplicies
Given a dimension function $\omega$, we introduce the notion of an $\omega$-vector weighted digraph and an $\omega$-equivalence between them. Then we establish a bijection between the weakly $(\mathbb{Z}/2)^n$-equivariant homeomorphism classes of small covers over a product of simplices $\Delta^{\om...
Gespeichert in:
Veröffentlicht in: | Journal of the Korean Mathematical Society 2022, 59(5), , pp.963-986 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a dimension function $\omega$, we introduce the notion of an $\omega$-vector weighted digraph and an $\omega$-equivalence between them. Then we establish a bijection between the weakly $(\mathbb{Z}/2)^n$-equivariant homeomorphism classes of small covers over a product of simplices $\Delta^{\omega(1)}\times\cdots \times \Delta^{\omega(m)}$ and the set of $\omega$-equivalence classes of $\omega$-vector weighted digraphs with $m$-labeled vertices, where $n$ is the sum of the dimensions of the simplicies. Using this bijection, we obtain a formula for the number of weakly $(\mathbb{Z}/2)^n$-equivariant homeomorphism classes of small covers over a product of three simplices. KCI Citation Count: 0 |
---|---|
ISSN: | 0304-9914 2234-3008 |
DOI: | 10.4134/JKMS.j220104 |