Weakly equivariant classification of small covers over a product of simplicies

Given a dimension function $\omega$, we introduce the notion of an $\omega$-vector weighted digraph and an $\omega$-equivalence between them. Then we establish a bijection between the weakly $(\mathbb{Z}/2)^n$-equivariant homeomorphism classes of small covers over a product of simplices $\Delta^{\om...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Korean Mathematical Society 2022, 59(5), , pp.963-986
Hauptverfasser: Asli Guclukan Ilhan, Sabri Kaan Gurbuzer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a dimension function $\omega$, we introduce the notion of an $\omega$-vector weighted digraph and an $\omega$-equivalence between them. Then we establish a bijection between the weakly $(\mathbb{Z}/2)^n$-equivariant homeomorphism classes of small covers over a product of simplices $\Delta^{\omega(1)}\times\cdots \times \Delta^{\omega(m)}$ and the set of $\omega$-equivalence classes of $\omega$-vector weighted digraphs with $m$-labeled vertices, where $n$ is the sum of the dimensions of the simplicies. Using this bijection, we obtain a formula for the number of weakly $(\mathbb{Z}/2)^n$-equivariant homeomorphism classes of small covers over a product of three simplices. KCI Citation Count: 0
ISSN:0304-9914
2234-3008
DOI:10.4134/JKMS.j220104