머신러닝을 사용한 서리 예측 연구
서리는 표면 근처의 공기의 이슬점 온도가 빙점 이하일 때 수증기가 승화, 응축되어 땅이나 물체에 얼게 되는 작은 얼음 결정체이다. 서리가 내리면 농작물이 직접 피해를 입는다. 농작물이 낮은 온도에 접촉하면 조직이 얼어서 세포막이나 엽록체가 딱딱해지고 파괴되거나 건조한 세포가 죽습니다. 2020년 7월, 세계 최대 커피 생산국인 브라질 미나스제라이스 주에 갑작스러운 영하의 날씨와 서리가 내려 지역 커피 나무의 약 30%가 피해를 입었다. 이로 인해 피해로 커피값이 크게 올랐고, 피해가 심각한 농가는 농작물이 회복되기까지 3년이 걸리기...
Gespeichert in:
Veröffentlicht in: | Ŭngyong tʻonggye yŏnʼgu 2022, 35(4), , pp.543-552 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | kor |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | 서리는 표면 근처의 공기의 이슬점 온도가 빙점 이하일 때 수증기가 승화, 응축되어 땅이나 물체에 얼게 되는 작은 얼음 결정체이다. 서리가 내리면 농작물이 직접 피해를 입는다. 농작물이 낮은 온도에 접촉하면 조직이 얼어서 세포막이나 엽록체가 딱딱해지고 파괴되거나 건조한 세포가 죽습니다. 2020년 7월, 세계 최대 커피 생산국인 브라질 미나스제라이스 주에 갑작스러운 영하의 날씨와 서리가 내려 지역 커피 나무의 약 30%가 피해를 입었다. 이로 인해 피해로 커피값이 크게 올랐고, 피해가 심각한 농가는 농작물이 회복되기까지 3년이 걸리기 때문에 2024년에야 커피를 생산할 수 있다. 본 논문에서는 심한 서리가 내리는 것을 방지하기 위해 기상청이 제공하는 서리 발생 데이터와 기상관측 데이터를 이용해 서리를 예측하려고 했다. 관측 지점의 고도 및 풍속, 온도, 습도, 강수량, 흐림 등의 기상 요인을 반영하여 모델을 구축하였다. XGB, SVM, Random Forest, MLP 모델을 사용하여 다양한 하이퍼 파라미터를 학습 데이터로 적용하여 각 모델에 가장 적합한 모델을 선택하였다. 마지막으로, 결과는 테스트 데이터에서 정확도 (acc)와 중요 성공 지수 (CSI)로 평가되었다. XGB는 90.4%의 acc와 64.4%의 CSI로 다른 모델에 비해 최고의 모델이었고, SVM은 89.7%의 acc와 61.2%의 CSI로 그 뒤를 이었다. 랜덤 포레스트와 MLP는 약 89%의 acc와 약 60%의 CSI로 비슷한 성능을 보였다.
When frost occurs, crops are directly damaged. When crops come into contact with low temperatures, tissues freeze, which hardens and destroys the cell membranes or chloroplasts, or dry cells to death. In July 2020, a sudden sub-zero weather and frost hit the Minas Gerais state of Brazil, the world’s largest coffee producer, damaging about 30% of local coffee trees. As a result, coffee prices have risen significantly due to the damage, and farmers with severe damage can produce coffee only after three years for crops to recover, which is expected to cause long-term damage.
In this paper, we tried to predict frost using frost generation data and weather observation data provided by the Korea Meteorological Administration to prevent severe frost. A model was constructed by reflecting weather factors such as wind speed, temperature, humidity, precipitation, and cloudiness. Using XGB(eXtreme Gradient Boosting), SVM(Support Vector Machine), Random Forest, and MLP(Multi Layer perceptron) models, various hyper parameters were applied as training data to select the best model for each model. Finally, the results were evaluated as accuracy(acc) and CSI(Critical Success Index) in test data.
XGB was the best model compared to other models with 90.4% ac and 64.4% CSI, followed by SVM with 89.7% ac and 61.2% CSI. Random Forest and MLP showed similar performance with about 89% ac and about 60% CSI. |
---|---|
ISSN: | 1225-066X 2383-5818 |