Mean values of derivatives of quadratic prime Dirichlet $L$-functions in function fields
In this paper, we establish an asymptotic formula for mean value of $L^{(k)}(\frac{1}{2},\chi_{P})$ averaging over $\mb P_{2g+1}$ and over $\mb P_{2g+2}$ as $g\to\infty$ in odd characteristic. We also give an asymptotic formula for mean value of $L^{(k)}(\frac{1}{2},\chi_{u})$ averaging over $\mc I_...
Gespeichert in:
Veröffentlicht in: | Communications of the Korean Mathematical Society 2022, 37(3), , pp.635-648 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we establish an asymptotic formula for mean value of $L^{(k)}(\frac{1}{2},\chi_{P})$ averaging over $\mb P_{2g+1}$ and over $\mb P_{2g+2}$ as $g\to\infty$ in odd characteristic. We also give an asymptotic formula for mean value of $L^{(k)}(\frac{1}{2},\chi_{u})$ averaging over $\mc I_{g+1}$ and over $\mc F_{g+1}$ as $g\to\infty$ in even characteristic. KCI Citation Count: 0 |
---|---|
ISSN: | 1225-1763 2234-3024 |
DOI: | 10.4134/CKMS.c210205 |