Mean values of derivatives of quadratic prime Dirichlet $L$-functions in function fields

In this paper, we establish an asymptotic formula for mean value of $L^{(k)}(\frac{1}{2},\chi_{P})$ averaging over $\mb P_{2g+1}$ and over $\mb P_{2g+2}$ as $g\to\infty$ in odd characteristic. We also give an asymptotic formula for mean value of $L^{(k)}(\frac{1}{2},\chi_{u})$ averaging over $\mc I_...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications of the Korean Mathematical Society 2022, 37(3), , pp.635-648
1. Verfasser: 정환엽
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we establish an asymptotic formula for mean value of $L^{(k)}(\frac{1}{2},\chi_{P})$ averaging over $\mb P_{2g+1}$ and over $\mb P_{2g+2}$ as $g\to\infty$ in odd characteristic. We also give an asymptotic formula for mean value of $L^{(k)}(\frac{1}{2},\chi_{u})$ averaging over $\mc I_{g+1}$ and over $\mc F_{g+1}$ as $g\to\infty$ in even characteristic. KCI Citation Count: 0
ISSN:1225-1763
2234-3024
DOI:10.4134/CKMS.c210205