Anti-Obesity Effect of Porcine Collagen Peptide in 3T3-L1 Adipocytes and High-Fat Diet-Fed Mice by Regulating Adipogenesis

Obesity is one of the most common diseases caused by an imbalance in the intake and expenditure of energy, and it is associated with various metabolic complications. This study aimed at investigating the anti-obesity effects and mechanisms of porcine collagen peptide (PCP) using 3T3-L1 preadipocytes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal food 2022, 25(7), , pp.732-740
Hauptverfasser: Lee, Eunji, Bang, Jiyoung, Lee, Jeong Yoon, Jun, Woojin, Lee, Yoo-Hyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Obesity is one of the most common diseases caused by an imbalance in the intake and expenditure of energy, and it is associated with various metabolic complications. This study aimed at investigating the anti-obesity effects and mechanisms of porcine collagen peptide (PCP) using 3T3-L1 preadipocytes and high-fat diet (HFD)-fed mice. The PCP treatment significantly inhibited the adipocyte differentiation and attenuated the mRNA expression of transcription factors (CCAAT/enhancer-binding protein alpha [C/EBPα] and peroxisome proliferator-activated receptor gamma [PPARγ]) and the lipogenic gene (fatty acid synthase [FAS]) expression in 3T3-L1 preadipocytes. In the in vivo study, HFD-fed mice were fed low- (1.5 g/kg body weight/day) and high- (4.5 g/kg body weight/day) PCP for 12 weeks and compared with the normal diet-fed group and HFD-fed control group. The PCP-fed groups showed significantly lower body weight gain, white fat weight gain, serum triglycerides, and adipocyte size compared with the HFD-fed group. The changes in body fat were associated with the upregulation of adiponectin and the downregulation of leptin, C/EBPα, PPARγ, and FAS. These results suggest that PCP has the potential to reduce obesity by suppressing adipogenesis and could be applied as a functional food material. KCI Citation Count: 0
ISSN:1096-620X
1557-7600
DOI:10.1089/jmf.2022.K.0025