Numerical studies on the important fission products for estimating the source term during a severe accident

In this paper, we select important fission products for the estimation of the source term during a severe accident of a PWR. The selection is based on the numerical results obtained from depletion calculations for the typical PWR fuel via the in-house code named DEGETION (Depletion, Generation, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear engineering and technology 2022, 54(7), , pp.2690-2701
Hauptverfasser: Lee, Yoonhee, Cho, Yong Jin, Lim, Kukhee
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we select important fission products for the estimation of the source term during a severe accident of a PWR. The selection is based on the numerical results obtained from depletion calculations for the typical PWR fuel via the in-house code named DEGETION (Depletion, Generation, and Transmutation of Isotopes on Nuclear Application), release fractions of the fission products derived from NUREG-1465, and effective dose conversion coefficients from ICRP 119. Then, for the selected fission products, we obtain the adjoint solutions of the Bateman equations for radioactive decay in order to determine the importance of precursors producing the aforementioned fission products via radioactive decay, which would provide insights into the assumption used in MACCS 2 for a level 3 PSA analysis in which up to six precursors are considered in the calculations of radioactive decays for the fission product after release from the reactor.
ISSN:1738-5733
2234-358X
DOI:10.1016/j.net.2022.02.025