Amelioration of DSS-Induced Acute Colitis in Mice by Recombinant Monomeric Human Interleukin-22
IL-22, a pleiotropic cytokine, is known to have a profound effect on the regeneration of damaged intestinal barriers. The tissue-protective properties of IL-22 are expected to be potentially exploited in the attenuation and treatment of colitis. However, because of the disease-promoting role of IL-2...
Gespeichert in:
Veröffentlicht in: | Immune network 2022, 22(3), , pp.1-18 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | IL-22, a pleiotropic cytokine, is known to have a profound effect on the regeneration of damaged intestinal barriers. The tissue-protective properties of IL-22 are expected to be potentially exploited in the attenuation and treatment of colitis. However, because of the disease-promoting role of IL-22 in chronic inflammation, a comprehensive evaluation is required to translate IL-22 into the clinical domain. Here, we present the effective production of soluble human IL-22 in bacteria to prove whether recombinant IL-22 has the ability to ameliorate colitis and inflammation. IL-22 was expressed in the form of a biologically active monomer and non-functional oligomers. Monomeric IL-22 (mIL-22) was highly purified through a series of 3 separate chromatographic methods and an enzymatic reaction. We reveal that the resulting mIL-22 is correctly folded and is able to phosphorylate STAT3 in HT-29 cells. Subsequently, we demonstrate that mIL-22 enables the attenuation of dextran sodium sulfate-induced acute colitis in mice, as well as the suppression of pro-inflammatory cytokine production. Collectively, our results suggest that the recombinant mIL-22 is suitable to study the biological roles of endogenous IL-22 in immune responses and can be developed as a biological agent associated with inflammatory disorders. |
---|---|
ISSN: | 1598-2629 2092-6685 |
DOI: | 10.4110/in.2022.22.e26 |