Understanding cavitation-related mechanism of therapeutic ultrasound in the field of urology: Part I of therapeutic ultrasound in urology

Shock waves are commonly used in the field of urology. They have two phases, positive and negative, and the bubble generation is roughly classified into acoustic cavitation (AC) and laser-induced cavitation (LIC). We evaluated the occurrence of cavitation, its duration, the area of interest, and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Investigative and clinical urology 2022, 63(4), , pp.385-393
Hauptverfasser: Cho, Sung Yong, Kwon, Ohbin, Kim, Seong-Chan, Song, Hyunjae, Kim, Kanghae, Choi, Min Joo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Shock waves are commonly used in the field of urology. They have two phases, positive and negative, and the bubble generation is roughly classified into acoustic cavitation (AC) and laser-induced cavitation (LIC). We evaluated the occurrence of cavitation, its duration, the area of interest, and the maximal diameter of the cavitation bubbles. Changes in AC occurred at 0.2 ms with the highest number of bubbles and disappeared at 0.6 ms. The bubble size was 2 mm in diameter. Changes in LIC bubbles were observed in three pulse modes. The short pulse showed an initial bubble starting at 0.005 ms, which reached its largest size at 0.4 to 0.6 ms. The long pulse showed an initial bubble starting at 0.005 ms, which reached its largest size at 0.4 ms with the formation of an additional lagena-shaped bubble at 0.6 ms. The distance mode of MOSES showed two signal peaks with the formation of two consecutive bubbles at 0.2 and 0.6 ms. The main difference in the laser beams between the long-pulse and the MOSES modes was the continuity and the peak power of the laser beam. The diameters parallel to the laser direction were 6.8, 8.6, and 9.7 mm at 1, 2, and 3 J, respectively, in the short pulse. While the cavitation bubbles rupture, ejectile force occurs in numerous directions, transmitting high enough energy to break the targets. Cavitation bubbles should be regarded as energy and the mediators of energy for stone fragmentation and tissue destruction.
ISSN:2466-0493
2466-054X
DOI:10.4111/icu.20220059