Coefficient Estimates for a Subclass of Bi-univalent Functions Associated with Symmetric q-derivative Operator by Means of the Gegenbauer Polynomials
In the present paper, a subclass of analytic and bi-univalent functions is defined using a symmetric q−derivative operator by means of Gegenbauer polynomials. Coefficients bounds for functions belonging to this subclass are obtained. Furthermore, the Fekete-Szego problem for this subclass is solved....
Gespeichert in:
Veröffentlicht in: | Kyungpook mathematical journal 2022, 62(2), , pp.257-269 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present paper, a subclass of analytic and bi-univalent functions is defined using a symmetric q−derivative operator by means of Gegenbauer polynomials. Coefficients bounds for functions belonging to this subclass are obtained. Furthermore, the Fekete-Szego problem for this subclass is solved. A number of known or new results are shown to follow upon specializing the parameters involved in our main results. KCI Citation Count: 0 |
---|---|
ISSN: | 1225-6951 0454-8124 |
DOI: | 10.5666/KMJ.2022.62.2.257 |