Coefficient Estimates for a Subclass of Bi-univalent Functions Associated with Symmetric q-derivative Operator by Means of the Gegenbauer Polynomials

In the present paper, a subclass of analytic and bi-univalent functions is defined using a symmetric q−derivative operator by means of Gegenbauer polynomials. Coefficients bounds for functions belonging to this subclass are obtained. Furthermore, the Fekete-Szego problem for this subclass is solved....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kyungpook mathematical journal 2022, 62(2), , pp.257-269
Hauptverfasser: Basem Aref Frasin, Ala Amourah, Tariq Al-Hawary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper, a subclass of analytic and bi-univalent functions is defined using a symmetric q−derivative operator by means of Gegenbauer polynomials. Coefficients bounds for functions belonging to this subclass are obtained. Furthermore, the Fekete-Szego problem for this subclass is solved. A number of known or new results are shown to follow upon specializing the parameters involved in our main results. KCI Citation Count: 0
ISSN:1225-6951
0454-8124
DOI:10.5666/KMJ.2022.62.2.257