Application of time-resolved linear dichroism spectroscopy: Intensity borrowing in charge transfer complex absorption spectra

Time-resolved linear dichroism spectroscopy has been used to study the influence of solvent on the charge transfer complex formed between hexamethylbenzene and 1,2,4,5-tetracyanobenzene. It was shown that cyano-substituted solvents induce a 1500 cm –1 increase in the charge transfer transition energ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of chemistry 2003-06, Vol.81 (6), p.567-574
Hauptverfasser: Levy, Dustin, Arnold, Bradley R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Time-resolved linear dichroism spectroscopy has been used to study the influence of solvent on the charge transfer complex formed between hexamethylbenzene and 1,2,4,5-tetracyanobenzene. It was shown that cyano-substituted solvents induce a 1500 cm –1 increase in the charge transfer transition energies relative to those observed in chlorinated solvents. Furthermore, the angle between the charge transfer absorption transition moments and the photochemically produced radical anion absorption transition moment, after relaxation, has been measured for this complex in several solvents. A simple model was used to correlate the angles measured using time-resolved linear dichroism spectroscopy with the extent of localized excitation mixed into the charge transfer transitions. These measurements reveal that different charge transfer transitions borrow intensity from the localized excitation to different extents. By using different excitation wavelengths, the partitioning of the borrowed intensity among the charge transfer transitions of this complex could be evaluated for the first time.Key words: 1,2,4,5-tetracyanobenzene, hexamethylbenzene, donor–acceptor complex, photoinduced electron transfer, photoselection.
ISSN:0008-4042
1480-3291
DOI:10.1139/v03-033