The use of PLDLA/PCL-T scaffold to repair osteochondral defects in vivo

Content Partner: Directory of Open Access Journals. The physiological repair of osteochondral lesions requires the development of a scaffold that is compatible with the structure of the damaged tissue, cartilage and bone. The aim of this study was to evaluate the biological performance of a PLDLA/PC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Andrea Rodrigues Esposito, Angelo Carneiro Bonadio, Nathaly Oliveira Pereira, Túlio Pereira Cardoso, Maria Lourdes Peris Barbo, Eliana Aparecida de Rezende Duek
Format: Artikel
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Content Partner: Directory of Open Access Journals. The physiological repair of osteochondral lesions requires the development of a scaffold that is compatible with the structure of the damaged tissue, cartilage and bone. The aim of this study was to evaluate the biological performance of a PLDLA/PCL-T (90/10) scaffold for repairing osteochondral defects in rabbits. Polymeric scaffolds containing saccharose (75% w/v) were obtained by solvent casting and then implanted in the medial knee condyles of 12 New Zealand rabbits after osteochondral damage with a trephine metallic drill (diameter: 3.3 mm) in both medial femoral condyles. Each rabbit received the same treatment, i.e., the polymeric scaffold was implanted on the right side while no material was implanted on the left side (control). Four and 12 weeks later histological examination revealed bone neoformation in the implant group, with the presence of hyaline cartilage and mesenchymal tissue. In contrast, the control group showed bone neoformation with necrosis, exacerbated superficial fibrosis, inflammation and cracks in the neoformed tissue. These findings indicate that the PLDLA/PCL-T scaffold was biocompatible and protected the condyles by stabilizing the lesion and allowing subchondral bone tissue and hyaline cartilage formation.