Multi-Agency Ensemble Forecast of Wildfire Air Quality in the United States: Toward Community Consensus of Early Warning

Wildfires pose increasing risks to human health and properties in North America. Due to large uncertainties in fire emission, transport, and chemical transformation, it remains challenging to accurately predict air quality during wildfire events, hindering our collective capability to issue effectiv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the American Meteorological Society 2024-04, Vol.105 (4)
Hauptverfasser: Li, Yunyao, Tong, Daniel, Makkaroon, Peewara, DelSole, Timothy, Tang, Youhua, Campbell, Patrick, Baker, Barry, Cohen, Mark, Darmenov, Anton, Ahmadov, Ravan, James, Eric, Hyer, Edward, Xian, Peng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wildfires pose increasing risks to human health and properties in North America. Due to large uncertainties in fire emission, transport, and chemical transformation, it remains challenging to accurately predict air quality during wildfire events, hindering our collective capability to issue effective early warnings to protect public health and welfare. Here we present a new real-time Hazardous Air Quality Ensemble System (HAQES) by leveraging various wildfire smoke forecasts from three U.S. federal agencies (NOAA, NASA, and Navy). Compared to individual models, the HAQES ensemble forecast significantly enhances forecast accuracy. To further enhance forecasting performance, a weighted ensemble forecast approach was introduced and tested. Compared to the unweighted ensemble mean, the multilinear regression weighted ensemble reduced fractional bias by 34% in the major fire regions, false alarm rate by 72%, and increased hit rate by 17%. Finally, we improved the weighted ensemble using quantile regression and weighted regression methods to enhance the forecast of extreme air quality events. The advanced weighted ensemble increased the PM2.5 exceedance hit rate by 55% compared to the ensemble mean. Our findings provide insights into the development of advanced ensemble forecast methods for wildfire air quality, offering a practical way to enhance decision-making support to protect public health.
ISSN:0003-0007
1520-0477
DOI:10.1175/BAMS-D-23-0208.1