NASA’s Mid-Atlantic Communities and Areas at Intensive Risk Demonstration: Translating Compounding Hazards to Societal Risk

Remote sensing provides a unique perspective on our dynamic planet, tracking changes and revealing the course of complex interactions. Long term monitoring and targeted observation combine with modeling and mapping to provide increased awareness of hydro-meteorological and geological hazards. Disast...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rogers, Laura, Borges, David, Murray, John, Loftis, J. Derek, Wang, Harry, Molthan, Andrew, Bell, Jordan, Cohen, Sagy, Allen, Thomas, Sun, Donglian, Bekaert, David, Moore, William
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Remote sensing provides a unique perspective on our dynamic planet, tracking changes and revealing the course of complex interactions. Long term monitoring and targeted observation combine with modeling and mapping to provide increased awareness of hydro-meteorological and geological hazards. Disasters often follow hazards and the goal of NASA’s Disasters Program is to look at the earth as a highly coupled system to reduce risk and enable resilience. Remote sensing and geospatial science are used as tools to help answer critical questions that inform decisions. Data is not the same as information, nor does understanding of processes necessarily translate into decision support for disaster preparedness, response and recovery. Accordingly, NASA is engaging the scientific and decision-support communities to apply remote sensing, modeling, and related applications in Communities and Areas at Intensive Risk (CAIR). In 2017, NASA’s Applied Sciences Disasters Program hosted a regional workshop to explore these issues with particular focus on coastal Virginia and North Carolina. The workshop brought together partners in academia, emergency management, and scientists from NASA and partnering federal agencies to explore capabilities among the team that could improve understanding of the physical processes related to these hazards, their potential impact to changing communities, and to identify methodologies for supporting emergency response and risk mitigation. The resulting initiative, the mid-Atlantic CAIR project, demonstrates the ability to integrate satellite derived earth observations and physical models into actionable, trusted knowledge. Severe storms and associated storm surge, sea level rise, and land subsidence coupled with increasing populations and densely populated, aging critical infrastructure often leave coastal regions and their communities extremely vulnerable. The integration of observations and models allow for a comprehensive understanding of the compounding risk experienced in coastal regions and enables individuals in all positions make risk-informed decisions. This initiative uses a representative storm surge case as a baseline to produce flood inundation maps. These maps predict building level impacts at current day and for sea level rise (SLR) and subsidence scenarios of the future in order to inform critical decisions at both the tactical and strategic levels. To accomplish this analysis, the mid-Atlantic CAIR project brings together Fede