Thermal Analysis of Potted Litz Wire for High-Power-Density Aerospace Electric Machines

Increasing the power density and efficiency of electric machines (motors and generators) is integral to bringing Electrified Aircraft (EA) to commercial realization. To that end an effort to create a High Efficiency Megawatt Motor (HEMM) with a goal of exceeding 98% efficiency and 1.46 MW of power h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Woodworth, Andrew A., Smith, Andrew D., Sixel, William R., Edwards, Ryan D., Jansen, Ralph H., Mccormick, Sean P., Robbie, Malcolm G., Szpak, Gerald M., Naghipour, P. Ghezeljeh, Paria, Shin, Euy-Sik E.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increasing the power density and efficiency of electric machines (motors and generators) is integral to bringing Electrified Aircraft (EA) to commercial realization. To that end an effort to create a High Efficiency Megawatt Motor (HEMM) with a goal of exceeding 98% efficiency and 1.46 MW of power has been undertaken at the NASA Glenn Research Center. Of the motor components the resistive losses in the stator windings are by far the largest contributor (34%) to total motor loss. The challenge is the linear relationship between resistivity and temperature, making machine operation sensitive to temperature increases. In order to accurately predict the thermal behavior of the stator the thermal conductivity of the Litz wire-potting-electrical insulation system must be known. Unfortunately, this multi material system has a wide range of thermal conductivities (0.1 W/m-K – 400 W/m-K) and a high anisotropy (axial vs transverse) making the prediction of the transverse thermal conductivity an in turn the hot spot temperatures in the windings is difficult. In order to do this a device that simulates the thermal environment found in the HEMM stator was designed. This device is not unlike the motorettes (little motors) that are described in IEEE standards for testing electrical insulation lifetimes or other electric motor testing. However, because the HEMM motor design includes significant rotor electrical and thermal considerations the term motorette was not deemed appropriate. Instead statorette (or little stator) was adopted as the term for this test device. This paper discussed the design, thermal heat conjugate analysis (thermal model), manufacturing and testing of HEMM's statorette. Analysis of the results is done by thermal resistance network model and micro thermal model and is compared to analytical predictions of thermal conductivity of the insulated and potted Litz wire system.