Using RotCFD to Predict Isolated XV-15 Rotor Performance
Experimental techniques to measure rotorcraft aerodynamic performance are widely used. However, the need exists to understand the limitations of ground based testing by augmenting the analysis of experimental test results with Computational Fluid Dynamics (CFD) modeling. The immediate objective of t...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Experimental techniques to measure rotorcraft aerodynamic performance are widely used. However, the need exists to understand the limitations of ground based testing by augmenting the analysis of experimental test results with Computational Fluid Dynamics (CFD) modeling. The immediate objective of the present research is to develop an XV-15 Tilt Rotor Research Aircraft rotor model for investigation of wind tunnel wall interference. The predicted performance of the XV-15 during various flight modes is compared to theoretical and experimental data. This research is performed to support wind tunnel tests scheduled for 2016. A mid-fidelity RANS solver, RotCFD, is used with an unsteady, incompressible flow model and a realizable k- turbulence model. The rotor is modeled using an actuator disk model or blade element model with a momentum source approach. In RotCFD the setup, grid generation and running of cases is faster than many CFD codes which makes it a useful engineering tool. Performance predictions need not be as accurate as high-fidelity CFD codes, as long as wall effects can be properly simulated. Being able to accurately predict unsteady rotorcraft performance on desktop-class computers provides a quicker analysis of highly complex flows during the initial design phase. |
---|