Optical Communications Systems for NASA's Human Space Flight Missions
The Laser-Enhanced Mission Communications Navigation and Operational Services (LEMNOS) office at Goddard Space Flight Center (GSFC) manages two NASA optical communication related projects, the Orion EM-2 Optical Communications Terminal (O2O) and the Integrated Laser Communications Relay Demonstratio...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Other |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The Laser-Enhanced Mission Communications Navigation and Operational Services (LEMNOS) office at Goddard Space Flight Center (GSFC) manages two NASA optical communication related projects, the Orion EM-2 Optical Communications Terminal (O2O) and the Integrated Laser Communications Relay Demonstration (LCRD) Low-Earth Orbit (LEO) User Modem and Amplifier Terminal (ILLUMA-T) projects. The main goal of LEMNOS is the advancement and implementation of optical communications systems and technologies for NASA missions. The O2O mission is sponsored by NASA's Human Exploration and Operations (HEO) Mission Directorate. The O2O project will provide optical communications capability to the Orion series of spacecraft, starting with the demonstration of operational utility on EM-2. It will be the first time a human exploration mission will rely on optical communications for its high-bandwidth link. ILLUMA-T is sponsored by the Space Communications and Navigation (SCaN) Program Office. It is destined for the International Space Station (ISS) as an external payload attached to the Japanese Experiment Module - Exposed Facility (JEM-EF). The ILLUMA-T project is developing an optical communications user terminal to demonstrate high bandwidth data transfer between LEO and the ground through the geosynchronous LCRD relay. ILLUMA-T will be the first demonstration of a LEO user of the LCRD system, pointing and tracking from a moving spacecraft at LEO to GEO satellite and vice versa, end-to-end operational utility of optical communications, and 51 Mbps forward link to ISS from ground. Both projects are collaborations between GSFC, Massachusetts Institute of Technology-Lincoln Laboratory (MIT-LL), and a number of contractors. |
---|