Interferometric Imaging of Titan's HC3N, H(13)CCCN, and HCCC(15)N
We present the first maps of cyanoacetylene isotopologues in Titan's atmosphere, including H(13)CCCN and HCCC(15)N, detected in the 0.9 mm band using the Atacama Large Millimeter/submillimeter array (ALMA) around the time of Titan's (southern winter) solstice in 2017 May. The first high-re...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2018-05, Vol.859 (1) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present the first maps of cyanoacetylene isotopologues in Titan's atmosphere, including H(13)CCCN and HCCC(15)N, detected in the 0.9 mm band using the Atacama Large Millimeter/submillimeter array (ALMA) around the time of Titan's (southern winter) solstice in 2017 May. The first high-resolution map of HC3N in its v(sub 7) = 1 vibrationally excited state is also presented, revealing a unique snapshot of the global HC3N distribution, free from the strong optical depth effects that adversely impact the ground-state (v = 0) map. The HC3N emission is found to be strongly enhanced over Titan's south pole (by a factor of 5.7 compared to the north pole), consistent with rapid photochemical loss of HC3N from the summer hemisphere combined with production and transport to the winter pole since the 2015 April ALMA observations. The H(13)CCCN/HCCC(15)N flux ratio is derived at the southern HC3N peak, and implies an HC3N/HCCC(15)N ratio of 67 +/- 14. This represents a significant enrichment in 15N compared with Titan's main molecular nitrogen reservoir, which has a N-14/N-15 ratio of 167, and confirms the importance of photochemistry in determining the nitrogen isotopic ratio in Titan's organic inventory. |
---|---|
ISSN: | 0004-637X 1538-4357 |