The Distribution of Radioactive Ti-44 in Cassiopeia A
The distribution of elements produced in the innermost layers of a supernova explosion is a key diagnostic for studying the collapse of massive stars. Here we present the results of a 2.4 Ms NuSTAR observing campaign aimed at studying the supernova remnant Cassiopeia A (Cas A). We perform spatially...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2016-12, Vol.834 (1) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The distribution of elements produced in the innermost layers of a supernova explosion is a key diagnostic for studying the collapse of massive stars. Here we present the results of a 2.4 Ms NuSTAR observing campaign aimed at studying the supernova remnant Cassiopeia A (Cas A). We perform spatially resolved spectroscopic analysis of the Ti-44 ejecta, which we use to determine the Doppler shift and thus the three-dimensional (3D) velocities of the Ti-44 ejecta. We find an initial Ti-44 mass of (1.54 +/- 0.21) x 10(exp. -4) Solar Mass, which has a present-day average momentum direction of 340 degrees +/- 15 degrees projected onto the plane of the sky (measured clockwise from celestial North) and is tilted by 58 degrees +/- 20 degrees into the plane of the sky away from the observer, roughly opposite to the inferred direction of motion of the central compact object. We find some Ti-44 ejecta that are clearly interior to the reverse shock and some that are clearly exterior to it. Where we observe Ti-44 ejecta exterior to the reverse shock we also see shock-heated iron; however, there are regions where we see iron but do not observe Ti-44. This suggests that the local conditions of the supernova shock during explosive nucleosynthesis varied enough to suppress the production of Ti-44 by at least a factor of two in some regions, even in regions that are assumed to be the result of processes like Alpha-rich freezeout that should produce both iron and titanium. |
---|---|
ISSN: | 0004-637X 1538-4357 |