Performance Evaluation of the Approaches and Algorithms using Hamburg Airport Operations

The German Aerospace Center (DLR) and the National Aeronautics and Space Administration (NASA) have been independently developing and testing their own concepts and tools for airport surface traffic management. Although these concepts and tools have been tested individually for European and US airpo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhu, Zhifan, Lee, Hanbong, Jung, Yoon, Okuniek, Nikolai, Gerdes, Ingrid, Schier, Sebastian
Format: Other
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The German Aerospace Center (DLR) and the National Aeronautics and Space Administration (NASA) have been independently developing and testing their own concepts and tools for airport surface traffic management. Although these concepts and tools have been tested individually for European and US airports, they have never been compared or analyzed side-by-side. This paper presents the collaborative research devoted to the evaluation and analysis of two different surface management concepts. Hamburg Airport was used as a common test bed airport for the study. First, two independent simulations using the same traffic scenario were conducted: one by the DLR team using the Controller Assistance for Departure Optimization (CADEO) and the Taxi Routing for Aircraft58; Creation and Controlling (TRACC) in a real-time simulation environment, and one by the NASA team based on the Spot and Runway Departure Advisor (SARDA) in a fast-time simulation environment. A set of common performance metrics was defined. The simulation results showed that both approaches produced operational benefits in efficiency, such as reducing taxi times, while maintaining runway throughput. Both approaches generated the gate pushback schedule to meet the runway schedule, such that the runway utilization was maximized. The conflict-free taxi guidance by TRACC helped avoid taxi conflicts and reduced taxiing stops, but the taxi benefit needed be assessed together with runway throughput to analyze the overall performance objective.