Computational Role of Tunneling in a Programmable Quantum Annealer

Quantum tunneling is a phenomenon in which a quantum state tunnels through energy barriers above the energy of the state itself. Tunneling has been hypothesized as an advantageous physical resource for optimization. Here we present the first experimental evidence of a computational role of multiqubi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2016-01, Vol.7
Hauptverfasser: Boixo, Sergio, Smelyanskiy, Vadim, Shabani, Alireza, Isakov, Sergei V, Dykman, Mark, Amin, Mohammad, Mohseni, Masoud, Denchev, Vasil S, Neven, Hartmut
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum tunneling is a phenomenon in which a quantum state tunnels through energy barriers above the energy of the state itself. Tunneling has been hypothesized as an advantageous physical resource for optimization. Here we present the first experimental evidence of a computational role of multiqubit quantum tunneling in the evolution of a programmable quantum annealer. We developed a theoretical model based on a NIBA Quantum Master Equation to describe the multi-qubit dissipative cotunneling effects under the complex noise characteristics of such quantum devices.We start by considering a computational primitive, the simplest non-convex optimization problem consisting of just one global and one local minimum. The quantum evolutions enable tunneling to the global minimum while the corresponding classical paths are trapped in a false minimum. In our study the non-convex potentials are realized by frustrated networks of qubit clusters with strong intra-cluster coupling. We show that the collective effect of the quantum environment is suppressed in the critical phase during the evolution where quantum tunneling decides the right path to solution. In a later stage dissipation facilitates the multiqubit cotunneling leading to the solution state. The predictions of the model accurately describe the experimental data from the D-WaveII quantum annealer at NASA Ames. In our computational primitive the temperature dependence of the probability of success in the quantum model is opposite to that of the classical paths with thermal hopping. Specially, we provide an analysis of an optimization problem with sixteen qubits,demonstrating eight qubit cotunneling that increases success probabilities. Furthermore, we report results for larger problems with up to 200 qubits that contain the primitive as subproblems.
ISSN:1476-4687
DOI:10.1038/ncomms10327