Application of a Novel Long-Reach Manipulator Concept to Asteroid Redirect Missions
A high priority mission currently being formulated by NASA is to capture all or part of an asteroid and return it to cis-lunar space for examination by an astronaut crew. Two major mission architectures are currently being considered: in the first (Mission Concept A), a spacecraft would rendezvous a...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A high priority mission currently being formulated by NASA is to capture all or part of an asteroid and return it to cis-lunar space for examination by an astronaut crew. Two major mission architectures are currently being considered: in the first (Mission Concept A), a spacecraft would rendezvous and capture an entire free flying asteroid (up to 14 meters in diameter), and in the second (Mission Concept B), a spacecraft would rendezvous with a large asteroid (which could include one of the Martian moons) and retrieve a boulder (up to 4 meters in diameter). A critical element of the mission is the system that will capture the asteroid or boulder material, enclose it and secure it for the return flight. This paper describes the design concepts, concept of operations, structural sizing and masses of capture systems that are based on a new and novel Tendon- Actuated Lightweight In-Space MANipulator (TALISMAN) general-purpose robotic system. Features of the TALISMAN system are described and the status of its technology development is summarized. TALISMAN-based asteroid material retrieval system concepts and concepts-of-operations are defined for each asteroid mission architecture. The TALISMAN-based capture systems are shown to dramatically increase operational versatility while reducing mission risk. Total masses of TALISMAN-based systems are presented, reinforcing the mission viability of using a manipulator-based approach for the asteroid redirect mission. |
---|