The Evolution and Role of the Saharan Air Layer During Hurricane Helene (2006)

The Saharan air layer (SAL) has received considerable attention in recent years as a potential negative influence on the formation and development of Atlantic tropical cyclones. Observations of substantial Saharan dust in the near environment of Hurricane Helene (2006) during the National Aeronautic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Braun, Scott A., Sippel, Jason A., Shie, Chung-Lin, Boller, Ryan A.
Format: Report
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Saharan air layer (SAL) has received considerable attention in recent years as a potential negative influence on the formation and development of Atlantic tropical cyclones. Observations of substantial Saharan dust in the near environment of Hurricane Helene (2006) during the National Aeronautics and Space Administration (NASA) African Monsoon Multidisciplinary Activities (AMMA) Experiment (NAMMA) field campaign led to suggestions about the suppressing influence of the SAL in this case. In this study, a suite of satellite remote sensing data, global meteorological analyses, and airborne data are used to characterize the evolution of the SAL in the environment of Helene and assess its possible impact on the intensity of the storm. The influence of the SAL on Helene appears to be limited to the earliest stages of development, although the magnitude of that impact is difficult to determine observationally. Saharan dust was observed on the periphery of the storm during the first two days of development after genesis when intensification was slow. Much of the dust was observed to move well westward of the storm thereafter, with little SAL air present during the remainder of the storm's lifetime and with the storm gradually becoming a category-3 strength storm four days later. Dry air observed to wrap around the periphery of Helene was diagnosed to be primarily non-Saharan in origin (the result of subsidence) and appeared to have little impact on storm intensity. The eventual weakening of the storm is suggested to result from an eyewall replacement cycle and substantial reduction of the sea surface temperatures beneath the hurricane as its forward motion decreased.