Functional Sensory-Motor Performance Following Long Term Space Flight: The First Results of "Field Test" Experiment
The effect that extended-duration space flights may have on human space travelers, including exploration missions, is widely discussed at the present time. Specifically, there is an increasing amount of evidence showing that the physical capacity of cosmonauts is significantly reduced after long-dur...
Gespeichert in:
Hauptverfasser: | , , , , , , , , , |
---|---|
Format: | Report |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect that extended-duration space flights may have on human space travelers, including exploration missions, is widely discussed at the present time. Specifically, there is an increasing amount of evidence showing that the physical capacity of cosmonauts is significantly reduced after long-duration space flights. It is evident that the most impaired functions are those that rely on gravity, particularly up right posture and gait. Because of the sensorimotor disturbances manifested in the neurology of the posture and gait space flight and postflight changes may also be observed in debilitating motion sickness. While the severity of particular symptoms varies, disturbances in spatial orientation and alterations in the accuracy of voluntary movements are persistently observed after long-duration space flights. At this time most of the currently available data are primarily descriptive and not yet suitable for predicting operational impacts of most sensorimotor decrements observed upon landing on planetary surfaces or asteroids. In particular there are no existing data on the recovery dynamics or functionality of neurological, cardiovascular or muscle performance making it difficult to model or simulate the cosmonauts' activity after landing and develop the appropriate countermeasure that will ensure the rapid and safe recovery of crewmembers immediately after landing in what could be hostile environments. However and as a starting position, the videos we have acquired during recent data collection following the long duration flights of cosmonauts and astronauts walking and performing other tasks shortly after return from space flight speak volumes about their level of deconditioning. A joint Russian-American team has developed a new study specifically to address the changes in crewmembers performance and the recovery of performance with the intent of filling the missing data gaps. The first (pilot) phase of this study includes recording body kinematics and quantifying the coordination and timing of relatively simple basic movements - transition from seated and prone positions to standing, walking, stepping over obstacles, tandem walking, muscle compliance, as well as characteristics of postural sway and orthostatic tolerance. Testing for changes in these parameters have been initiated in the medical tent at the landing site. The first set of experiments showed that during the first hour after landing, cosmonauts and astronauts were able to execute (alth |
---|